بار الکتریکی:

وجود بار الکتریکی سبب افزایش نیرو الکترواستاتیکی می‌شود: بارها به یکدیگر نیرو اعمال می‌کنند، نیرویی که در گذشته شناخته شده ولی علتش نامعلوم بود. یک گوی سبک که از یک نخ آویزان است، هنگام تماس با میله شیشه‌ای باردار که تحت مالش با پارچه قرار گرفته، می‌تواند باردار شود. اگر گوی دیگری نیز با همان میله شیشه‌ای باردار شود، گوی قبلی را دفع می‌کند: بار تلاش می‌کند تا دو گوی را از هم دور کند. دو گوی باردار شده به وسیله میله پلاستیکی نیز یکدیگر را دفع می‌کنند. اما، اگر یک گوی به وسیله میله شیشه‌ای و گوی دیگر به وسیله یک میله پلاستیکی باردار شود این دو گوی یکدیگر را جذب می‌کنند. شارل آگوستن دو کولن این پدیده را در قرن هیجدهم کشف کرد. او استنباط کرد که بار الکتریکی خود را به دو شکل نمایان می‌کند. این کشف به قانون مشهوری منجر شد: اجسام با بار همنام یکدیگر را دفع و اجسام با بار غیر همنام یکدیگر را جذب می‌کنند.


 

بار روی الکتروسکوپ سبب می‌شود تا ورقه‌ها از یکدیگر دور شوند.

این نیرو ذرات باردار را تحت تاثیر قرار می‌دهد، بنابرین بار تمایل دارد تا جای امکان به طور مساوی در یک سطح هادی پخش شود. اندازه نیرو الکترومغناطیسی، چه جاذبه باشد و چه دافعه، با استفاده از قانون کولن بدست می‌آید. مطابق این قانون، نیرو با حاصلضرب بار دو ذره در مجذور معکوس فاصله بین آن دو متناسب است. نیروی الکترومغناطیس بسیار نیرومند است و در واقع بعد از نیروی هسته‌ای قوی، نیرومندترین نیرو به شمار می‌آید، اما بر خلاف آن این نیرو در تمام فواصل اعمال می‌شود. در مقایسه با نیروی گرانش، نیرو الکترومغناطسی که دو الکترون را دفع می‌کند، ۱۰۴۲ بار قویتر از نیروی جاذبه گرانشی بین آن دو است.

مطالعات نشان می‌دهند که منشأ بار انواع مخصوصی از ذرات زیراتمی هستند که ویژگی بار الکتریکی را دارند. بار الکتریکی سبب تقویت نیروی الکترومغناطیسی می‌شود، که یکی از چهار نیروی بنیادی به حساب می‌آید. آشناترین حاملان بار الکتریکی الکترون ها و پروتون ها هستند. تحقیقات حاکی از وجود قانون بقای بار الکتریکی هستند و این بدان معناست که در یک سیستم ایزوله بدون توجه به هر تغییری که در سیستم روی دهد، مقدار بار کلی آن ثابت می‌ماند. در یک سیستم ممکن است بار از جسمی به جسم دیگر منتقل شود که این اتفاق می‌تواند به صورت تماس مستقیم باشد، یا با عبور از یک ماده رسانا مانند سیم، روی دهد. واژه الکتریسیته ساکن به وجود بار روی یک جسم، گفته می‌شود که اغلب هنگام مالش در ماده غیرهمسان به یکدیگر ایجاد می‌شود و بار از یکی به دیگری انتقال می‌یابد.

بار الکترون و پروتون مخالف همند، بنابرین مقدار بار ممکن است مثبت یا منفی باشد. طبق قرارداد باری که به وسیله الکترون‌ها حمل می‌شود منفی و باری که به وسیله پروتون‌ها حمل می‌شود مثبت است، این موضوع از تلاش‌های بنجامین فرانکلین سرچشمه گرفته است. اندازه بار را با علامت Q نشان می‌دهند که واحدش کولن است. هر الکترون حدوداً بار −۱٫۶۰۲۲×۱۰−۱۹ کولن را حمل می‌کند. بار پروتون نیز معادل الکترون بوده ولی علامتش مثبت می‌باشد، یعنی ۱٫۶۰۲۲×۱۰−۱۹ کولن. بار تنها به وسیله ماده جذب نمی‌شود، بلکه در پادماده نیز، هر پادذره باری هم اندازه و مخالف ذره مربوطه‌اش تحمل می‌کنند.

بار را می‌توان به وسیله ابزار گوناگونی سنجید، یک ابزار جدید برای سنجش بار الکتروسکوپ نام دارد، که اگرچه هنوز در کلاس‌های درسی به کار می‌رود، جایگزین برق سنج الکترونیکی شده است.

جریان الکتریکی:

حرکت بارهای الکتریکی را جریان الکتریکی گویند که شدت آن با واحد آمپر سنجیده می‌شود. جریان می‌تواند شامل حرکت هر ذره بارداری باشد؛ که اکثراً الکترون‌ها هستند ولی هر بار در حال حرکتی، یک جریان به حساب می‌آید.

مطابق قرارداد تاریخی، جریان مثبت مسیری را که هر بار مثبت شامل شده‌ای طی کند، می‌پیماید یا از مثبت ترین بخش یک مدار به منفی ترین بخشش انتقال می‌یابد. جریانی که از این الگو پیروی کند، جریان قراردادی نام دارد. بنابرین حرکت الکترون‌های دارای بار مخالف در یک مدار الکتریکی، یکی از آشناترین اشکال جریان، در خلاف جهت حرکت الکترون‌ها، مثبت فرض می‌شود. اما، بر اساس شرایط، یک جریان الکتریکی می‌تواند شامل یک جریان از ذرات باردار، هم در یک مسیر و هم در هر دو مسیر باشد. قرارداد مثبت به منفی برای ساده‌سازی این شرایط وضع شده است.


 یک قوس الکتریکی یک دمونستراسیون الکتریکی از جریان الکتریکی فراهم می‌آورد.

فرایندی که در آن جریان الکتریکی از مواد عبور می‌کند با واژه رسانایی الکتریکی مورد استفاده قرار می‌گیرد، و طبیعت آن با ذرات باردار و ماده‌ای که به وسیله آن جابجا می‌شوند، متفاوت است. مثال‌هایی برای جریان الکتریکی شامل رسانای فلزی، که الکترون‌ها در رسانایی مانند فلزات جریان می‌یابند و برق‌کافت می‌شود، که در آن یون‌ها (اتم های باردار) در مایعات یا پلاسماهایی مانند جرقه‌های الکتریکی جریان می‌یابند. در حالی که ذرات به خودی خود کندند، و گاهی اوقات با سرعت رانش میانگین یک میلیمتر در ثانیه پیش می‌روند، میدان الکتریکی که آن‌ها را پیش می‌برد، سرعت آن‌ها را به نزدیکی سرعت نور می‌رساند و سیگنال‌های الکتریکی را قادر می‌سازد که با سرعت سیم ها را بپیمایند.

جریان دارای چند تاثیر قابل مشاهده است که به طور تاریخی ابزاری برای شناسایی وجودش به شمار می‌رود. جریان می‌تواند آب را تجزیه کند و این موضوع در سال ۱۸۰۰ میلادی به وسیله ویلیام نیکولسون و آنتونی کارلیسله کشف شد و امروزه آن را با نام برق‌کافت می‌شناسیم. در سال ۱۸۳۳ میلادی، مایکل فارادی راه آنان را به خوبی ادامه داد. جریان در یک مقاومت الکتریکی سبب تجمع گرما در مقاومت می‌شود. در سال ۱۸۴۰ میلادی، این اثر را جیمز ژول از نظر ریاضی مورد مطالعه قرار داد. یکی از مهمترین اکتشافات مرتبط با جریان به طور اتفاقی در سال ۱۸۲۰ میلادی به وسیله هانس کریستین اورستد صورت گرفت. این اتفاق زمانی روی داد که هنگام آماده کردن سخنرانی خود، او مشاهده کرد که جریان در یک سیم سوزن قطب‌نما را به حرکت در می‌آورد. او الکترومغناطیس را که یک تعامل اساسی بین الکتریسیته و مغتاطیس بود، کشف کرد. میزان انتشار الکترومغناطیسی تولید شده به وسیله قوس الکتریکی برای تولید تداخل الکترومغناطیسی کافیست که می‌تواند برای صدمه دیدن وسایل مجاور، مضر باشد.

در وسایل مهندسی یا خانگی جریان به دو دسته مستقیم و متناوب تقسیم می‌شود. این واژه‌ها به تغییرات جریان در بازه زمانی اشاره دارد. جریان مستقیم، برای مثال از یک باتری گرفته می‌شود و بیشتر لوازم الکترونیکی بدان نیاز دارند. این جریان یک سویه بوده که از قسمت مثبت مدار به قسمت منفی جریان می‌یابد. اگر این جریان به وسیله الکترون‌ها حمل شود، جهت جریان در خلاف جهت گفته شده خواهد بود. جریان متناوب جریانیست که به طور مکرر جهت جریانش تغییر می‌کند. این تغییر اغلب به شکل یک موج سینوسی است. بنابرین، جریان متناوب دارای پالس عقب و جلو بوده و در یک رسانا بدون حرکت بارها جریان تولید می‌کند. ارزش میانگین زمانی یک جریان متناوب صفر است، اما این جریان انرژی را در یک مسیر می‌رساند و سپس تغییر جهت می‌دهد. جریان متناوب تحت تاثیر ویژگی‌های الکتریکی در شرایط پایدار جریان مستقیم، مانند القاوری و ظرفیت خازنی قرار می‌گیرد. این ویژگی‌ها زمانی مهم می‌شوند که شدت جریان گذرا باشد.

میدان الکتریکی:

مفهوم میدان الکتریکی توسط مایکل فارادی مطرح شد. میدان الکتریکی در اطراف جسم باردار شکل می‌گیرد و به تمام ذرات باردار درون میدان نیرو وارد می‌کند. میدان الکتریکی بین دو بار، مشابه میدان جاذبه بین دو جرم عمل می‌کند و مانند آن در فضای بی‌نهایت گسترش می‌باید و یک رابطه مجذور معکوس با فاصله نشان می‌دهد. اما، یک فرق اساسی در این بین وجود دارد. میدان جاذبه همیشه در نقش جذب کننده عمل می‌کند و می‌کوشد تا دو جسم را به یکدیگر برساند، در حالی که میدان الکتریکی می‌تواند هم سبب جذب شود و هم دفع. از آن جا که اجسام بزرگ مانند سیاره‌ها دارای بار خالص نیستند، اغلب میدان الکتریکی در اطراف آنها صفر است؛ لذا با وجود اینکه نیرو جاذبه بسیار ضعیفتر است، در گیتی نیروی غالب به شمار می‌آید.


 خطوط میدان از یک بار مثبت در بالای صفحه رسانا ناشی می‌شوند.

میدان الکتریکی به طور عمومی در فضا متغیر است و شدت آن در هر نقطه با نیرویی مشخص می‌شود که به وسیله هر بار اندک ثابتی احساس می‌گردد. بار فرضی که ذره آزمون نام دارد، بسیار کوچک است تا میدان الکتریکی آن با میدان الکتریکی اصلی تداخل نداشته باشد و همچینی ثابت است تا از تأثیر میدان‌های مغناطیسی جلوگیری کند. از آن جا که میدان الکتریکی با واحد نیرو شناسایی می‌شود، و نیرو نیز یک بردار اقلیدسی است، درنتیجه یک میدان مغناطیسی یک بردار است که هم شدت دارد و هم مسیر. در واقع این یک میدان برداری است.

مطالعه میدان الکتریکی حاصل از بارهای ثابت الکتریسیته ساکن نام دارد. میدان به وسیله مجموعه‌ای از خطوط فرضی نمایش داده می‌شود که در هر نقطه از میدان مسیر آن را نمایش می‌دهند. این مفهوم به وسیله فارادی مطرح شد، که واژه خطوط میدانی که او بیان کرده بود، هنوز نیز کاربرد دارد. خطوط میدان مسیرهایی هستند که یک بار مثبت نقطه‌ای هنگامی که بدان نیرو وارد می‌شود، آن مسیرها را طی می‌کند. به هر حال، آن‌ها یک مفهوم ذهنی هستند و واقعیت فیزیکی ندارند و میدان به فضای بین خطوط نفوذ دارد. خطوط میدان ناشی از بارهای ساکن چند ویژگی کلیدی دارند: اولاً، آنها از بارهای مثبت سرچشمه می‌گیرند و به بارهای منفی ختم می‌شوند. ثانیاً، باید با زاویه‌ای قایم وارد اجسام رسانا شوند، ثالثاً، هرگز یکدیگر را قطع نمی‌کنند.

یک جسم رسانای توخالی تمام بارش را در سطح خارجی خود نگه می‌دارد. در نتیجه میدان در تمام نقاط داخل جسم صفر است. این موضوع نقش اصلی را در قفس فاراده بازی می‌کند، این قفس یک پوسته فلزی رساناست که فضای داخلی خود را از تأثیرات الکتریکی خارجی جدا می‌کند. نقش الکتریسیته ساکن در طراحی آیتم‌های وسایل ولتاژ بالا پر رنگ است. برای شدت میدان الکتریکی که یک جسم متوسط می‌تواند تحمل کند، محدودیتی وجود دارد. فراتر از این نکته، شکست الکتریکی رخ می‌دهد و قوس الکتریکی سبب ایجاد صاعقه بین دو قسمت باردار می‌شود. برای مثال، هوا تمایل دارد با عبور دادن قوس الکتریکی و ایجاد شکاف، شدت میدان الکتریکی را به بیش از ۳۰ کیلوولت بر سانتی‌متر برساند. در شکاف‌های بزرگتر، شدت شکست ضعیفتر است و شاید یک کیلوولت در هر سانتیمتر باشد. مهمترین رویداد قابل مشاهده آن، آذرخش است، و زمانی اتفاق می‌افتد که با افزایش ستون‌های هوا، بارها در ابرها جدا شوند و میدان الکتریکی هوا را افزایش دهند تا از حد تحمل، تجاوز کند. ولتاژ آذرخش‌های بزرگ می‌تواند به بزرگی ۱۰۰ مگاولت باشد و انرژی به بزرگی ۲۵۰ کیلووات ساعت را تخلیه کند.

شدت میدان تا حد زیادی تحت تأثیر اجسام رسانای نزدیک میدان قرار دارد و در اشیای نوک تیز تشدید می‌شود. از این موضوع در برقگیرها استفاده می‌شود که آذرخش، با استفاده از تیر نوک تیز مهار می‌شود تا ساختمان تحت محافظت، از صدمه دیدن در امان بماند.

پتانسیل الکتریکی:

مفهوم پتانسیل الکتریکی با میدان الکتریکی ارتباط نزدیکی دارد. به بار کوچکی که در یک میدان الکتریکی قرار می‌گیرد، نیرو وارد می‌شود، و برای حرکت دادن این بار بر خلاف نیرویی که بدان وارد می‌شود، به کار نیازمندیم. پتانسیل الکتریکی در هر نقطه میزان انرژی لازم برای آوردن بار آزمون از فاصله بی‌نهایت دور به آن نقطه است. واحد آن اغلب ولت است، و یک ولت، پتانسیلی است که با استفاده از یک ژول کار می‌توان یک بار یک کولنی را از فاصله بینهایت دور به یک نقطه آورد. توصیح پتانسیل اگرچه رسمی است، کاربرد چندان ندارد، و مفهوم کاربردی‌تر، اختلاف پتانسیل الکتریکی است که به انرژی لازم برای به حرکت در آوردن بار آزمون بین دو نقطه مشخص گفته می‌شود. میدان الکتریکی درای ویژگی مخصوصی است و آن اینست که پایستار است، و این بدان معناست که به مسیری که بار می‌پیماید وابسته نیست: تمام مسیرهای بین دو نقطه به انرژی یکسانی نیاز دارند، و بنابرین یک مقدار منحصر به فرد برای اختلاف پتانسیل مورد نیاز است. یکای ولت به عنوان واحد اندازه‌گیری و توصیف اختلاف پتانسیل الکتریکی یا ولتاژ شناخته می‌شود.


 یک جفت باتری ای‌ای. علامت + نشان دهنده قطبش اختلاف پتانسیل بین خروجی‌های باتری است.


برای اهداف کاربردی، بهتر است نقطه‌ای را به عنوان مبدا انتخاب کنیم و پتانسیل را با توجه به آن اندازه‌گیری و مقایسه کنیم. مبدا خیلی مناسب می‌تواند زمین الکتریکی باشد، که فرض بر اینست که در تمام نقاط پتانسیلش یکسان است. نام نقطه مبدا زمین الکتریکی است. زمین به عنوان منبا بی پایان از بارهای معادل مثبت و منفی فرض می‌شود و به همین دلیل از نظر الکتریکی خنثی و غیر قابل باردار شدن است.

پتانسیل الکتریکی یک کمیت اسکالر است، به همین دلیل تنها اندازه دارد و فاقد جهت می‌باشد. پتانسیل الکتریکی مشابه بلندی است: همانطور که یک جسم رها شده به دلیل اختلاف ارتفاع به وسیله میدان جاذبه به سمت پایین سقوط می‌کند، بار الکتریکی نیز به دلیل اختلاف پتانسیل ناشی از میدان مغناطیسی سقوط می‌کند. همانطور که در نقشه‌های موجود، خطوط کانتوری نقاط هم ارتفاع را نشان می‌دهند، می‌توان مجموعه خطوطی که نقاط هم پتانسیل را نشان می‌دهند (با نام خطوط هم‌پتانسیل شناخته می‌شود)، پیرامون یک جسم دارای بار الکترومغناطیسی رسم کرد. خطوط هم‌پتانسیل با تمام خطوط نیرو زاویه قائم می‌سازند. همچنین آن‌ها با سطح رسانای الکتریکی موازی اند، در غیر این صورت نیرویی تولید می‌شود که حاملان بار را به سطح پتانسیل می‌برد.

میدان الکتریکی به طور رسمی به عنوان نیرو وارده به واحد بار تعریف می‌شود، اما مفهوم پتانسیل اجازه استفاده از تعریفی مفیدتر و معادل را می‌دهد: میدان الکتریکی گرادیان مکانی پتانسیل الکتریکیست. واحدش اغلب ولت بر متر بوده، جهت بردار میدان، بزرگترین شیب پتانسیل و جایی است که خطوط هم‌پتانسیل در نزدیکترین حالت قرار دارند.

آهنربای الکتریکی:

کشف اورستد در سال ۱۸۲۱ میلادی در این باره که پیرامون سیم‌های حامل جریان الکتریکی میدان مغناطیسی وجود دارد، نشان داد که بین الکتریسیته و مغناطیس رابطه‌ای مستقیم وجود دارد. بعلاوه، به نظر می‌رسید این فعل و انفعال با نیروی جاذبه و الکتریکی (دو نیروی طبیعت که تا آن زمان شناخته شده بودند)، متفاوت است. نیرویی که به سوزن قطب‌نما وارد می‌شد آن را نه به سیم حامل جریان نزدیک و نه آن را دور می‌کرد، اما با آن زاویه قائم می‌ساخت. واژه‌های نسبتاً ناآشنای اورستد این بود: "تضاد الکتریکی به روشی چرخشی عمل می‌کند." این نیرو همچنین به جهت جریان نیز بستگی داشت، یعنی اگر جهت جریان برعکس می‌شد، جهت نیرو نیز معکوس می‌گشت.


اورستد اکتشاف خود را به طور کامل متوجه نشد، اما مشاهده کرد که آثار متقابل بودند: جریان به آهنربا نیرو و آهنربا به جریان نیرو وارد می‌کنند. بعدها آندره ماری آمپر این پدیده را بررسی کرد. او کشف کرد که دو سیم موازی حامل جریان به یکدیگر نیرو وارد می‌کنند. دو سیم که جهت جریانشان یکسان است، یکدیگر را جذب می‌کنند و دو سیم که جهت جریانشان مخالف هم است یکدیگر را دفع می‌کنند. این فعل و انفعال به واسطه میدان مغناطیسی ایجاد می‌شود که هر جریان تولید می‌کند و اساس تعریف جهانی آمپر را شکل می‌دهد.



 یک میدان مغناطیسی، در اطراف یک جریان

موتور الکتریکی از یک اثر مهم در الکترومغناطیس استفاده می‌کند: جریان در میدان مغناطیسی نیرویی عمود بر میدان و جریان تجربه می‌کند.

موتور الکتریکی از یک اثر مهم در الکترومغناطیس استفاده می‌کند: جریان در میدان مغناطیسی نیرویی عمود بر میدان و جریان تجربه می‌کند.

رابطه بین میدان‌های مغناطیسی و جریان بسیار مهم است، زیرا سبب شد تا مایکل فارادی در سال ۱۸۲۱ میلادی، موتور الکتریکی را اختراع کند. موتور تک‌قطبی فارادی از یک آهنربا قرار گرفته داخل مخزن جیوه تشکیل می‌شد. جریان به وسیله سیمی آویزان از محور بالای آهنربا و غوطه‌ور در جیوه برقرار می‌شد. آهنربا نیرویی مماسی بر سیم وارد می‌کرد و برای اینکه جریان برقرار شود، آن را پیرامون آهنربا می‌پیچاند.

آزمایش‌های فارادی در سال ۱۸۳۱ میلادی نشان داد در سیمی که عمود بر یک میدان مغناطیسی حرکت می‌کند، بین دو نقطه نهایی آن اختلاف پتانسیل ایجاد می‌شود. آنالیزهای متعاقب این فرایند، که با نام القای الکترومغناطیسی مشهور است، او را قادر ساخت تا قانون مشهور القای فارادی را بیان کند، قانونی که مطابق آن اختلاف پتانسیل مدار بسته، متناسب با تغییرات شار مغناطیسی حلقه است. استفاده از این کشف، او را قادر ساخت تا اولین مولد الکتریکی را در سال ۱۸۳۱ میلادی اختراع کند، مولدی که انرژی مکانیکی دیسک مسی در حال چرخش را به انرژی الکتریکی تبدیل می‌کرد. دیسک فارادی هیچ استفاده عملی نداشت، ولی نشان داد که می‌توان با استفاده از مغناطیس نیروی الکتریکی تولید کرد، امکانی که می‌توان آن را با پی روی از کارهای او بهبود بخشید.

الکتروشیمی:

فیزیکدان ایتالیایی، آلساندرو ولتا، باتری خود را به امپراتور فرانسه، ناپلئون بناپارت نشان می‌دهد.

توانایی واکنش شیمیایی برای تولید الکتریسیته و به طور برعکس توانایی الکتریسیته برای پیش بردن واکنش شیمیایی استفاده‌های فراوانی دارد.

الکتروشیمی همواره بخش مهمی از الکتریسیته بوده است. از زمان اختراع پیل ولتایی، پیل‌های الکتروشیمیایی وارد انواع مختلف باتری‌ها، پیل‌های آبکاری و برق‌کافت شده است. با این روش آلومینیم در حجم بزرگ تولید شد، و انرژی بسیاری از وسایل قابل حمل با استفاده از پیل‌های قابل شارژ تامین شد.

مدارهای الکتریکی:

یک مدار الکتریکی اتصالی داخلی از اجزای الکتریکی است تا بارهای الکتریکی در مسیر بسته به منظور هدفی معین جریان یابند.


اجزای یک مدار الکتریکی می‌تواند شکل‌های مختلفی داشته باشد، که می‌تواند شامل عناصری چون مقاومتها، خازنها، کلیدها، ترانسفورماتورها وسایل الکترونیکی می‌باشد. مدارهای الکتریکی حاوی اجزای فعال به ویژه نیم‌رساناها می‌باشند و رفتاری غیر خطی نشان می‌دهند که نیازمند آنالیز پیچیده‌ای است. سادهترین اجزای الکتریکی آنهایی هستند که نامشان غیرفعال و خطی اند: اگرچه ممکن است به طور موقت انرژی را ذخیره کنند، ولی شامل هیچ منبعی از آن نمی‌شوند و به تحریک‌ها، پاسخ‌های خطی می‌دهند.


 یک یک مدار الکتریکی ساده. منبع ولتاژ V در سمت چپ جریان الکتریکی I را تولید می‌کند و انرژی الکتریکی را به مقاومت R می‌رساند. جریان از مقاومت به منبع باز می‌گردد و مدار کامل می‌شود.

شاید مقاومت ساده‌ترین عنصر غیرفعال مدار باشند: همان‌طور که نامش نشان می‌دهد، او در مقابل جریان مقاونت نشان می‌دهد و انرژی را به صورت گرما به هدر می‌دهد. مقاومت حاصل حرکت بار در یک رساناست: برای مثال، ر فلزات، مقاومت ناشی از برخورد بین الکترون‌ها و یون‌هاست. قانون اهم قانون ابتدایی نظریه مدارها می‌باشد و بیان می‌کند که جریان گذرا از یک مقاومت، با اختلاف پتانسیل دو سر آن متناسب است. مقاومت بیشتر مواد در طیف‌های مختلف دما و جریان تقریباً ثابت است؛ موادی که از این شرایط پیروی می‌کنند، مواد «اهمی» نام دارند. اهم، واحد مقاومت بوده و به افتخار گئورگ زیمون اهم انتخاب شده است و علامتش با توجه به حروف یونانی، به شکل Ω است. یک Ω مقاومتی است که در پاسخ به جریان یک آمپری، اختلاف پتانسیل یک ولتی ایجاد می‌کند.

خازن حاصل توسعه بطری لیدن است و وسیله‌ایست که می‌تواند بار را ذخیره کند، او بدین وسیله انرژی الکتریکی را در میدان حاصل ذخیره می‌کند. از دو صفحه رسانا ساخته شده که به وسیله یک عایق دی‌الکتریک از یکدیگر جدا شده‌اند. در عمل، ورقه‌های فلزی نازک به یکدیگر چسبیده‌اند تا سطح تماس در واحد حجم و در نتیجه ظرفیت خازنی را افزایش دهند. واحد ظرفیت خازن فاراد است، که بعد از مایکل فارادی این نام اختصاص داده شد و با علامت F نشان داده می‌شود: یک فاراد عبارتست از اختلاف پتانسیل یک ولتی حاصله به هنگام ذخیره یک کولن بار الکتریکی در خازن. یک خازن متصل به منبع تغذیه در ابتدا به این دلیل که بار الکتریکی انباشته می‌کند، جریانی ایجاد می‌نماید. این جریان رفته رفته با پر شدن خازن کم می‌شود و در انتها به صفر می‌رسد؛ لذا یک خازن جریان شرایط پایدار ایجاد نمی‌کند، بلکه مسیر آن را می‌بندد.

القاگر یک رساناست که اغلب به شکل سیم پیچ است و در میدان مغناطیسی حاصل از جریان عبوری انرژی ذخیره می‌کند. زمانی که جریان تغییر می‌کند، میدان مغناطیسی و همچنین ولتاژ بین دو سر رسانا نیز دچار تغییر و تحول می‌گردد. ولتاژ حاصله با مشتق زمانی جریان متناسب است. ثابت تناسب آندوکتانس نام دارد. واحد آندوکتانس هانری است که به افتخار جوزف هانری، هم دوره فارادی انتخاب شده است. یک هانری آندوکتانسی است که اگر جریان گذرا از آن القاگر در هر ثانیه یک آمپر تغییر کند، اختلاف پتانسیل یک ولتی را ایجاد می‌کند. از برخی جهات رفتار القاگر برعکس خازن است: القاگر به جریان نامتغیر اجازه می‌دهد اما در مقابل جریان در حال تغییر ایستادگی می‌کند.

توان الکتریکی:

توان الکتریکی مقدار انرژی الکتریکی است که به وسیله مدار الکتریکی جابجا می‌شود. واحد توان در دستگاه بین‌المللی یکاها وات است. یک وات معادل یک ژول بر ثانیه است. توان الکتریکی مانند توان مکانیکی، سرعت انجام کار است. با واحد وات سنجیده و با حرف P نمایش داده می‌شود. توان الکتریکی تولید شده به وسیله یک جریان الکتریکی، برابر است با بار Q که در هر t ثانیه از اختلاف پتانسیل V عبور می‌کند.

در این رابطه Q بار الکتریکی با واحد کولن T زمان با واحد ثانیه I جریان الکتریکی با واحد آمپر V ولتاژ با واحد ولت تولید انرژی الکتریکی اغلب به وسیله مولد الکتریکی صورت می‌گیرد، اما این اتفاق می‌تواند به وسیله باتریهای شیمیایی یا سایر انواع متنوع منابع انرژی نیز اتفاق افتد. توان الکتریکی لازم برای کسب و کار و استفاده خانگی به وسیله صنعت نیرو تولید می‌شود. واحد فروش برق کیلووات ساعت (۳٫۶مگاژول) است که حاصل ضرب نیرو با واحد کیلووات در زمان با واحد ساعت است. شرکت‌های برق، میزان الکتریسته مصرفی را به وسیله کنتور اندازه‌گیری می‌کنند، که انرژی الکتریکی مصرفی مشتریان را نمایش می‌دهد.

الکترونیک:

الکترونیک با مدارهای الکتریکی در ارتباط است که شامل اجزای الکتریکی فعال مانند لامپ‌های خلا، ترانزیستورها، دیودها و مدارهای مجتمع می‌شود و با تکنولوژی‌های اتصال داخلی غیرفعال در ارتباط است. رفتار غیرخطی اجزای فعال و توانایی آنها در کنترل جریانهای الکترونی، سیگنال‌های ضعیف را تقویت می‌کند و در پردازش اطلاعات، مخابرات و پردازش سیگنال استفاده گسترده‌ای از الکترونیک صورت می‌گیرد. توانایی وسایل الکترونیک در عمل کردن به عنوان مدار امکان پردازش اطلاعات را فراهم می‌سازد. تکنولوژی‌های اتصال داخلی مانند فیبرهای مدار چاپی، تکنولوژی بسته‌بندی الکترونیک، و سایر انواع متنوع وسایل ارتباطی، قابلیت مدار را کامل کرده و اجزای مخلوط را به شکل یک سامانه کارآمد تبدیل کرده است.


 اجزای الکتریکی فناوری نصب سطحی


الکترونیک از علم و تکنولوژی الکتریکی و الکترومکانیکی فاصله گرفته است، که با ژنراتور، توزیع، انتقال، ذخیره و تبدیل انرژی الکتریکی به سایر اشکال انرژی و برعکس، با استفاده از ابزاری چون سیم‌ها، موتورهای الکتریکی، باتری‌ها، کلیدها، رله‌ها، ترانسفورماتورها، مقاومت‌ها و سایر اجزای غیرفعال است. این تمایز از سال ۱۹۰۶ و با اختراع ترایود به وسیله لی دفارست آغاز شد که تقویت سیگنال‌های رادیویی و شنیداری ضعیف بدون ابزار غیر مکانیکی صورت گرفت. قبل از ۱۹۵۰ نام این رشته "تکنولوژی رادیویی" بود زیرا کاربرد اصلی آن در طراحی و تحلیل فرستنده‌ها و گیرنده‌های رادیویی و لامپ‌های خلا بود.

امروزه، بسیاری از وسایل الکترونیکی به منظور کنترل الکترونی از مواد نیم‌رسانا استفاده می‌کنند. مطالعه وسایل نیم‌رسانا و تکنولوژی مرتبط با آن‌ها شاخه‌ای با نام فیزیک حالت جامد ایجاد کرده است، در حالی که طراحی و ساخت مدارهای الکتریکی برای حل مشکلات عملی در زیرشاخه مهندسی الکترونیک قرار دارد.

موج الکترومغناطیسی: